

A Model of the Reference Frame of the Ventriloquism Aftereffect and Saccade Adaptation

Peter Lokša,¹ and Norbert Kopčo¹

¹*Institute of Computer Science, Šafárik University, Košice, 04001, Slovak Republic*

peter.loksa@upjs.sk, norbert.kopco@upjs.sk

- 1 **Abstract:** Lokša & Kopčo¹ introduced a model of the reference frame of the
- 2 ventriloquism aftereffect (RFoVAE) that described many but not all available
- 3 RFoVAE data by assuming that the auditory spatial map, natively using the head-
- 4 centered RF, is adapted by visual signals in both eye-centered and head-centered
- 5 RFs. Here, the model is extended primarily by considering that, when saccade-to-
- 6 sound responses are used to measure ventriloquism, the saccades also undergo an
- 7 adaptation. The extended model can explain all available data, suggesting that the
- 8 RFoVAE is largely head-centered, while saccadic adaptation, which is nominally eye-
- 9 centered, accounts for the mixed RF observed experimentally.

11 1. Introduction

12 The “ventriloquism aftereffect” (VAE) is a cross-modal adaptation effect in
13 which the perceived location of sounds presented alone is shifted after repeated
14 presentations of spatially mismatched visual and auditory stimuli^{2,3,4}. To induce the
15 VAE, the visual and auditory components of the audiovisual stimuli need to be
16 spatially transformed in the brain as their location is initially encoded using different
17 reference frames (RFs); visual space is encoded relative to the direction of eye gaze;
18 auditory space relative to the head orientation⁵. Existing evidence about the RF into
19 which the signals get aligned is inconsistent. Some studies suggest the RF is mostly
20 head-centered⁶, while others suggest it is mostly eye-centered⁷. Additionally, it might
21 be a mixture of the two RFs^{8,9}, possibly reflecting the RF in which the oculo-motor
22 responses to the stimuli are executed¹⁰. To examine these inconsistencies
23 computationally, Lokša & Kopčo¹ introduced a model, called *dHEC*, that could
24 describe some of the available data, particularly those observing a mixed RF^{8,6}.
25 However, the model could not simultaneously explain the inconsistency between the
26 results suggesting a head-centered RF⁹ and those suggesting a mixed RF⁶, both of
27 which were obtained in experiments that used saccadic eye movements to perceived
28 auditory target location (i.e., “auditory saccades”) as a response method (details of
29 the experiments and of the model are in the following sections). The primary goal of
30 the current study is to extend the *dHEC* model¹ to provide a unified explanation of
31 all available data by considering that the saccades to auditory targets, used as a
32 response method in refs. 6 and 9, also undergo adaptation during VAE training. The
33 secondary goal is to extend the model to also describe a new adaptation

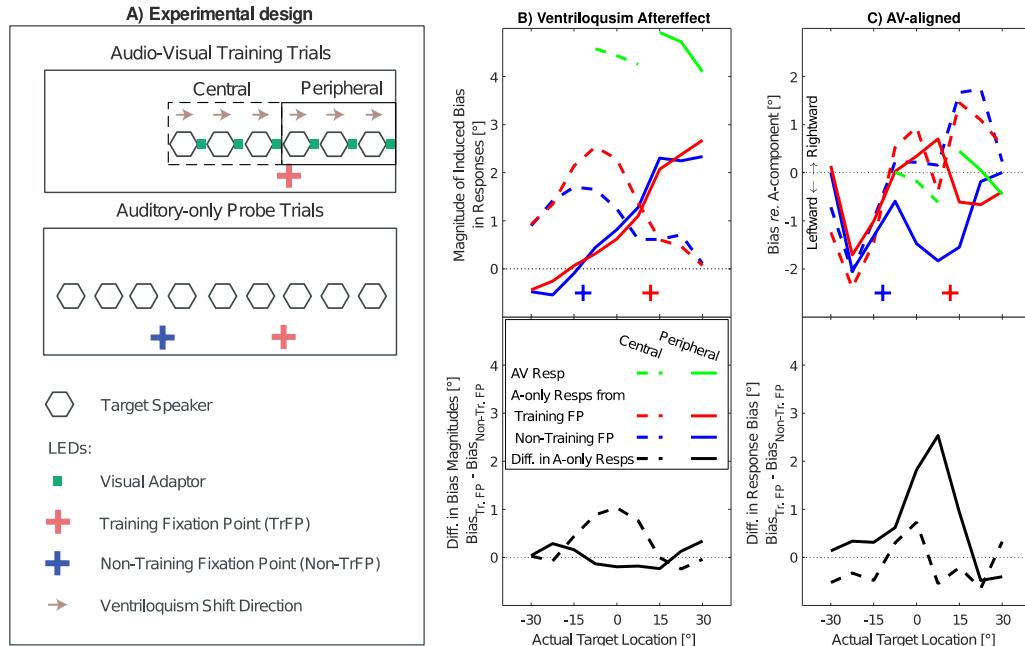
34 phenomenon in which shifts in responses were induced even by spatially aligned
35 audiovisual stimuli⁹ (again, described in detail in the following section). The *dHEC*
36 model¹ proposed a mechanism that could explain the new phenomenon when
37 considered in isolation, but not when considered simultaneously with the other
38 ventriloquism phenomena. With these extensions, the current model aims to provide
39 a unified theory of the visually induced adaptive phenomena in sound localization
40 and their RF.

41 The current paper first summarizes the previous experimental results^{6,9} and
42 the *dHEC* model¹. Then, the model extensions are introduced and evaluated.

43 2. Summary of previous experiments

44 Kopco et al.^{6,9} reported the results of two RF of VAE experiments that
45 were identical in all aspects except that the first one⁶ examined VAE locally induced
46 in the central subregion of audiovisual space while the second one⁹ used the
47 peripheral subregion (Figure 1A, top panel). They used one initial eye fixation
48 position (FP) on training trials (red '+' symbol) and presented the discrepant
49 audiovisual stimuli from the restricted spatial range (black dashed or solid frame). On
50 each audio-visual training trial, the auditory component (black hexagon) was
51 presented simultaneously with the visual component (green dot) that was either
52 aligned with it or displaced from it by 5° to the left or to the right (brown arrow;
53 displacement direction fixed within a session). On interleaved auditory-only probe
54 trials, they varied the initial eye position (red and blue '+' signs) with respect to the
55 head (which was fixed) and presented sounds from locations spanning both the same

56 head-centered locations and the same eye-centered locations as on the training trials
57 (Figure 1A, bottom panel). The subject’s task was to indicate the perceived location
58 of the auditory component by looking at it. No feedback was provided. The FP
59 location manipulation on probe trials served to test the RF of the recalibration, as
60 described in the following.


61 Figure 1B shows the experimental results from the AV-misaligned conditions
62 (averaged across data from sessions with visual component shifted leftwards and
63 rightwards) and expressed as bias *re* auditory component of the AV stimuli. The
64 responses to AV training stimuli were always very near the visual components in
65 both the central and peripheral experiments (green dashed and solid lines displaced
66 by 4-5° in Figure 1B), as well as in the AV-aligned baseline (green lines in Figure 1C
67 are near 0°). The displaced V component in the AV-misaligned conditions induced a
68 local VAE when measured with the eyes fixating the training FP (the red solid and
69 dashed lines in Figure 1B show that maximum ventriloquism was always induced in
70 the trained subregion of the auditory space). The critical manipulation of these
71 experiments was that half of the probe trials were performed with eyes fixating on a
72 new, non-training FP (blue “+” symbol), shifted away from the training FP (red “+”
73 symbol). It was expected that, if the VAE is induced in a head-centered RF, then
74 moving the eyes to the new FP would have no effect (i.e., that the blue lines would
75 be aligned with the corresponding red lines). On the other hand, if it is induced in a
76 purely eye-centered RF, then the location at which the maximum VAE is observed
77 would move with the FP (i.e., the blue lines would be identical to the corresponding
78 red lines, except that they would be shifted to the left by 23.5°, i.e., the angular

79 separation between the FPs). The experimental data showed that, in the central
80 experiment, moving the fixation resulted in a smaller VAE with the peak moving in
81 the eye gaze direction (blue vs. red dashed line), while in the peripheral experiment,
82 only a negligible effect of the FP shift was observed (blue and red solid lines
83 overlap). To better visualize these results, the lower panel of Figure 1B shows data
84 expressed as the difference between responses from training versus non-training FPs
85 from the respective upper panels (each black line shows the difference between the
86 respective red and blue data). For the central data, the black dashed line deviates
87 from zero, showing a mixed nature of the RF of the VAE induced in this region. On
88 the other hand, the black solid line is always near zero, corresponding to a
89 predominantly head-centered representation. The main goal of the current study is to
90 extend our previous model to explain this discrepancy between the central and
91 peripheral data.

92 Figure 1C shows the bias induced in the baseline runs with AV training
93 stimuli aligned. In the central-training experiment the responses from the two FPs
94 were similar (red and blue dotted lines). In the peripheral-training experiment the
95 responses for the targets at -7.5° to $+15^\circ$ differed between the two fixations, such
96 that the non-training FP responses fell well below the training-FP responses (red vs.
97 blue solid lines). Thus, the peripheral AV-aligned stimuli induced a fixation-
98 dependent adaptation in the auditory-only responses in the central region, a VAE-
99 like adaptation phenomenon that has not been previously reported. The black
100 dashed and solid lines in Figure 1C, showing the difference between the
101 corresponding red and blue data from the upper panel, highlight the FP-dependence

102 of the peripheral data in contrast to the FP-independence in the central data. The
 103 secondary goal of the current study is to extend the model to explain this
 104 inconsistency.

105

106

107 Fig. 1. Experimental design and results from Kopco et al. ^{6,9}. (A) Experimental
 108 design: nine loudspeakers were evenly distributed at azimuths from -30° to 30° at
 109 distance of 1.2 m. Two FPs were located 10° below the loudspeakers at $\pm 11.75^\circ$
 110 from the center. On training trials, audio-visual stimuli were presented either from
 111 the central region (auditory-component at -7.5° , 0° , or $+7.5^\circ$) or peripheral region
 112 (auditory-component at 15° , 22.5° , or 30°), while the subject fixated the training FP.
 113 The AV stimuli consisted of a sound paired with an LED offset by -5° , 0° , or $+5^\circ$
 114 (offset direction fixed within a session). On probe trials, the sound was presented
 115 from any of the loudspeakers while the eyes fixated one of the FPs. (B) Results for

116 AV-misaligned training. Solid and dashed lines show measured across-subject mean
117 biases in AV (green) and A-only trials (red and blue lines for respective FPs),
118 corresponding, respectively, to the ventriloquism effect and aftereffect. Data from
119 runs using V component shifted to the right and to the left are combined and always
120 plotted as if a rightward shift was induced. Black lines show the differences between
121 the respective red and blue lines. (C) Results for AV-aligned training plotted using
122 the same format as in panel B. All horizontal axes are plotted in head-centered RF.

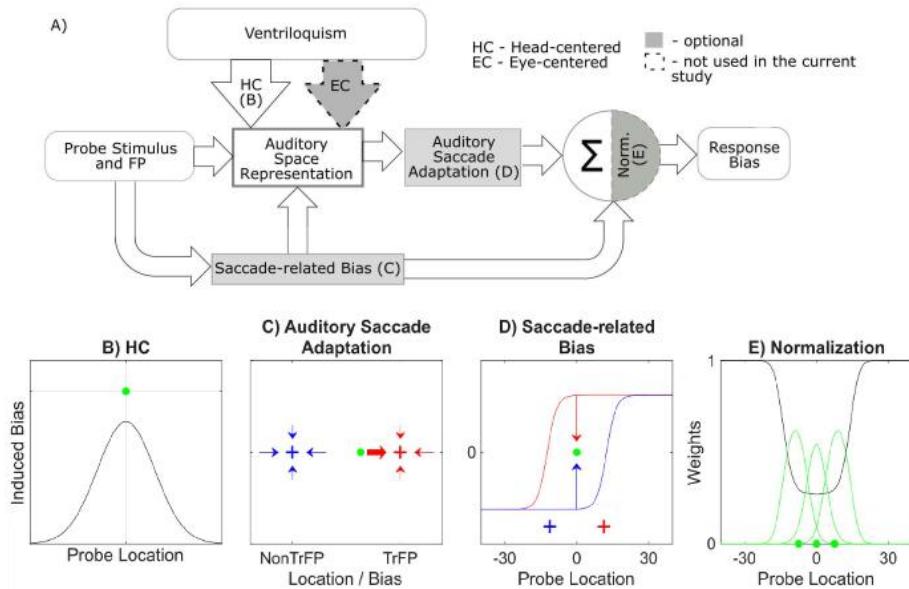
123 **3. Model Description**

124 Figure 2A shows the structure of the current version of the model. It
125 predicts the VAE bias as a function of the A-only probe azimuth and the FP location
126 (the “response bias” vs. “probe stimulus and FP” blocks). The main model
127 component is the “auditory space representation” block that encodes the VAE
128 biases induced by the visual ventriloquism signals (“ventriloquism” block) in head-
129 centered coordinate frame (“HC” arrow), assuming a continuous uniform
130 representation of auditory space. The induced VAE is determined by only
131 considering the AV stimuli used during training. As illustrated in Fig. 2B, for each
132 AV stimulus, the induced bias (black line) is strongest at the location of the A
133 component of the stimulus, independent of the fixation location, and it decreases
134 with distance from that location. Also, the model assumes that the overall strength of
135 the bias is proportional to the measured ventriloquism effect at those locations
136 (black line peak is below the green circle, representing the measured VAE strength).

137 Additional model components (gray in Fig. 2A) are optional and implement
138 alternative mechanisms that are examined as candidates for influencing the observed
139 RF of VAE results. The “EC” component (“EC” arrow) implements the hypothesis
140 that the ventriloquism signals influence the auditory space representation in eye-
141 centered RF. This mechanism was examined in the previous modeling study¹, the
142 best-performing model from which (“*dHEC*”) is used as a reference for the current
143 model evaluation.

144 The main new component of the current model is the “auditory saccade
145 adaptation” block. This block implements the hypothesis that, in addition to
146 adaptation of the auditory spatial map, the ventriloquism also induces adaptation of
147 the auditory saccades when saccades are used for responding to the AV and A
148 stimuli. Specifically, for the training condition illustrated in Fig. 1A (central training
149 region and rightward AV shift), it proposes that the saccade amplitude gets adapted
150 to become hypometric (shorter than needed to reach the auditory target) since that
151 agrees with the direction of the VAE-inducing AV stimulus disparity in that
152 condition. This is illustrated in Fig. 2C, where the thick red arrow represents the
153 rightward shift induced by the AV target (green) located to the left of the training FP
154 (red ‘+’ sign). This induced saccade hypometry then generalizes to new target
155 locations from the trained FP (thin red arrows), as well as to new, non-trained FPs
156 (blue ‘+’ sign and the thin blue arrows), for which the hypometries result in biases
157 that are either leftward or rightward in HC RF (the effect reverses for hypermetric
158 adaptation, i.e., when saccade amplitude becomes longer than needed to reach the
159 auditory target, as illustrated for the peripheral training in Fig. 1A). Additionally, the

160 effect is assumed to be only visible when the training region is between the fixation
161 regions, and its possible effects on perceived elevation are not considered. Since
162 existing studies of auditory saccades have not reported this specific form of
163 adaptation of auditory saccades¹³, it is proposed here as a parsimonious mechanism
164 that can explain the available RF of VAE data.


165 The “saccade-related bias” block is an optional component introduced in
166 *dHEC* model to explain the adaptation induced by the no-shift peripheral-training
167 condition (blue, red, and black solid lines in Figure 1C). It proposes that, when
168 saccades are used as the response method, there are a priori biases in saccade
169 responses to auditory-only stimuli^{11, 12} (illustrated by red and blue lines in Fig. 2D)
170 that get locally “corrected” by ventriloquism near the locations from which aligned
171 AV stimuli are presented on interleaved AV trials (blue and red arrows represent
172 shift from the a priori bias towards the AV aligned target). While in *dHEC* model this
173 mechanism could explain the newly observed adaptation when considered in
174 isolation, the predictions were less accurate when all the data of the two experiments
175 were considered simultaneously. The final new extension of the model addresses this
176 shortcoming by proposing an alternative to the simple addition of the components
177 used in the previous model. Specifically, here a scaled version of the sum of the
178 Auditory Saccade Representation and Saccade-Related Bias inputs is proposed as an
179 alternative (“Normalization” block), implementing a version of normalization to
180 limit the overall output of the neural channel¹⁴. The scaling (Fig. 2E) effectively acts
181 such that near the locations of the AV stimuli (green dots) the output is dominated

182 by the auditory-space-related input (green Gaussians), while outside the area it is
183 dominated by the saccade-related-bias component (black line).

184 There are three versions of the model evaluated here, all including the “Space
185 Representation” and “Saccade-related Bias” blocks and differing by whether they
186 include the optional components “Auditory Saccade Adaptation” and
187 “Normalization”. The *sHC* model only includes the “Auditory Saccade Adaptation”
188 block, the *nHC* only the “Normalization” block, while the *snHC* model includes both
189 components (if “Normalization” is replaced by a simple sum, as in the previous
190 model version). They are compared to the dHEC model which performed best in the
191 previous study¹.

192 To generate the predictions, the model only uses information about the
193 training AV stimulus locations and the average measured AV response biases for
194 those locations (i.e., the green data from Fig. 1B and 1C). As described previously¹,
195 this allows the appropriate version of the model to be applied to any VAE data in
196 which the FP locations, A-component locations and AV disparities are manipulated
197 during training. Also, the model can be applied to data obtained both using the
198 auditory saccade as well as other response methods. Finally, to make the model more
199 accessible, all the model versions were integrated into the Auditory Modeling
200 Toolbox.

201

202 Fig. 2. Structure of the model and illustration of its operation. (A) Block diagram of
 203 the model in which the optional model components are shown in gray. Panels B
 204 through E illustrate the operation of each of the components (see text for details).

205

206 *3.1 Detailed Model Specification*

207 The following model specification applies to the most general *snHC* model
 208 version, with the differences applying to reduced versions described as needed (all
 209 variables use HC representation and are in the units of degrees).

210 Equation 1 describes the predicted bias in responses \hat{r} to a given auditory
 211 stimulus at location s and for eyes fixating the location f as a combination of
 212 ventriloquism-induced adaptation in auditory spatial representation r_V and the

213 optional saccade-related bias r_E . In *dHEC*, this combination was a straightforward
 214 weighted sum:

215
$$\hat{r}(s, f) = r_E(s, f) + w r_V(s, f), \quad (1a)$$

216 which is now also normalized (as shown in Fig. 2E):

217
$$\hat{r}(s, f) = \frac{(1-w) r_E(s, f) + w r_V(s, f)}{(1-w) + w \sum_{i=1}^N w_{v,i}(s)}. \quad (1b)$$

218 Current model versions *nHC* and *snHC* use Eq. 1b, while *sHC* uses Eq. 1a.
 219 Parameter w is a free scaling parameter specifying the relative weight of the
 220 ventriloquism adaptation vs. the saccade-related bias, while $w_{v,i}$ is an additional
 221 ventriloquism-specific normalization factor defined in Eq. 3.

222 The ventriloquism-induced adaptation is defined as:

223
$$r_V(x, f) = \sum_{i=1}^N a_S \left(w_{v,i}(x) \cdot (r_{AV,i} - r_E(s_{AV,i}, f)) \right), s_{AV,i}, f, f_{T,i} \quad (2)$$

224 where i is the index through the N combinations of training locations and FPs (in
 225 the current experiments only the training location varies and $N = 3$). For each
 226 combination, the response shift due to VAE is computed as the disparity between
 227 the ventriloquism effect responses $r_{AV,i}$ and the a priori bias $r_E(s_{AV,i}, f)$ weighted by
 228 $w_{v,i}$, and then modulated by the saccade adaptation a_S . Weights $w_{v,i}$ use normal
 229 probability density functions φ , centered at the training locations with a standard
 230 deviation of σ , as a measure of the distance-dependent influence of i -th training
 231 location on target at location x in the HC frame (Fig. 2B):

232
$$w_{v,i}(x) = \frac{\varphi((x-s_{AV,i})/\sigma)}{\varphi(0)}. \quad (3)$$

233 The auditory saccade adaptation (Eq. 4) implements the mechanism
 234 illustrated in Fig. 2C. It scales the ventriloquism output by a constant amount, g ,
 235 such that its effect is either in the same direction or in the opposite direction of the
 236 VAE depending on whether current FP f is at the same side of the current AV
 237 training location s_{AV} as it was during the training f_T (for the nHC model version,
 238 $g = 0$):

239
$$a_s(x, s_{AV}, f, f_T) = x \cdot (1 - g \psi(m(s_{AV} - f_R))), \quad (4)$$

240 where $f_R = f$ if $(f - s_{AV,i})(f_T - s_{AV,i}) < 0$, and $f_R = f_T$ otherwise.

241 The ψ represents a sigmoidal function (Eq. 6) with a slope determined by parameter
 242 m . The condition for f_R proposes that the saccade adaptation occurs with respect to
 243 the current fixation only if the training region was between the current and training
 244 fixations (like in the current “central training” data), while it remains at the training
 245 fixation otherwise (e.g., in the current “peripheral training” data). The behavior of
 246 this function is further described in the Results section.

247 Finally, the saccade-related bias represents the hypothesized *a priori* shifts in
 248 responses (red and blue curves in Fig. 2D) as a sigmoid centered at a fixed distance
 249 from the fixation f :

250
$$r_E(x, f) = h \psi(k(x + cf)), \quad (5)$$

251 where

252

$$\psi(x) = \frac{2}{1+\exp(-x)} - 1. \quad (6)$$

253 To produce predictions, the model uses information about the locations of
254 the training AV stimuli $s_{AV,i}$, training FPs $f_{T,i}$, and the measured ventriloquism
255 biases for those stimuli $r_{AV,i}$, obtained from the experimental data (here, green lines
256 in Fig. 1) and it fits the free model parameters w , σ , g , m , b , k , and c .

257 *3.2 Parameter fitting and model evaluation*

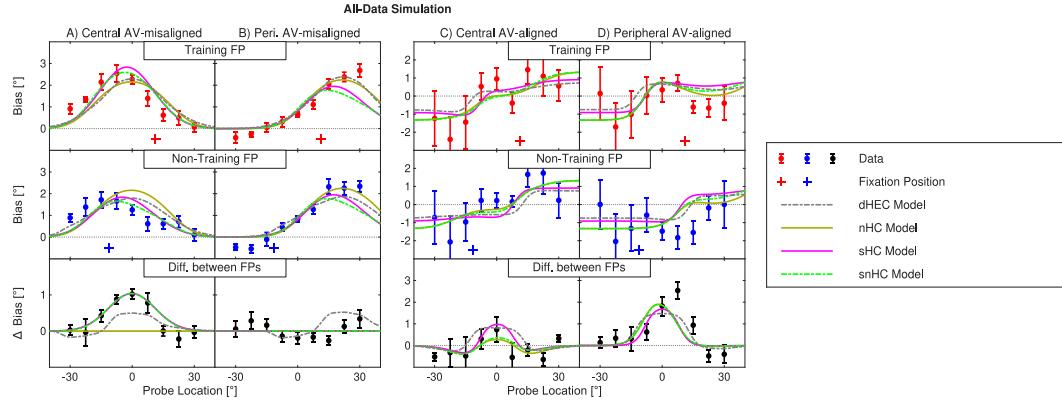
258 All evaluation procedures, briefly summarized here, were similar to ref. 1.
259 The complete data set used in the simulations consists of the AV-aligned and AV-
260 misaligned data for the central and peripheral training regions shown in Figure 1B–C.
261 The training FP and non-training FP data, as well as their difference were used (blue,
262 red, and black lines in Figure 1), resulting in a data set contained 108 A-only across-
263 subject mean and standard deviation stimulus-response data points ([9 azimuths] \times
264 [2 FPs +FP difference] \times [2 AV conditions] \times [2 training regions]). The
265 corresponding AV training stimuli and responses (green lines in Figure 1) were used
266 as fixed model parameters.

267 The three models were fitted to the data using a two-step procedure that
268 minimized the weighted MSE, consisting of a systematic search through the
269 parameter space followed by a non-linear iterative least-squares fitting (Matlab
270 function lsqnonlin). To compare the models' performance while accounting for the
271 number of parameters used by each model, we computed the Akaike information

272 criterion AICc. We use the rule that the model with the lower AICc is substantially
273 better than an alternative model only if the rounded-up value ΔAIC is larger than 2.
274 Also, the mean absolute error (MAE) was evaluated for each model (and used for
275 AICc computation).

276 **4. Results**

277 Figure 3 presents the simulation results by showing the experimental data
278 (from Fig. 1, now with SEM error bars) and the fitted models (lines), separately for
279 the training FP (top row), non-training FP (middle row), and their difference
280 (bottom row). Each column shows the results for a different combination of training
281 region (central vs. peripheral) and AV stimuli (aligned vs. misaligned). For the
282 experimental data, the first notable observation is that the error bars on the FP-
283 difference plots (black data in the bottom panel) are much smaller than those for the
284 individual FPs (red and blue in top and central panels). Therefore, the critical
285 evaluation of the current models was performed on the FP-difference data (bottom
286 row), while the overall trends in the data for each FP considered separately (top and
287 middle rows) are largely captured by all the models. The FP-difference plots for the
288 AV-misaligned data can be interpreted as showing the extent to which there is an EC
289 contribution to the RF in the data, with values near zero representing a purely HC
290 RF, while the larger the deviations from zero, the larger the contribution of EC RF.
291 The *dHEC* model¹ performs poorly, as it predicts a similar amount of the EC and
292 HC RF contributions for the central and peripheral data (gray dashed lines in the
293 bottom rows in Fig. 3A and 3B have similar peaks), while the data either have a
294 larger peak (Fig. 3A) or no peak at all (Fig. 3B). While the *nHC* model cannot predict


295 this pattern of results at all (beige line is fixed at zero in both panels), the models
296 with the saccade adaptation component can predict it very accurately (magenta and
297 green lines in both panels).

298 Comparison of the *snHC* and *nHC* model predictions in the upper and
299 middle panels of Fig. 3A illustrates the function of the saccade-adaptation
300 mechanism for the central-training data. Since this region lies on opposite sides re.
301 the two FPs, saccade adaptation acts in the opposite direction for the two FPs,
302 increasing the adaptation effect for the training FP (magenta and green lines are
303 above beige line in the upper panel) while decreasing it for the non-training FP
304 (magenta and green lines are below beige line in the lower panel). On the contrary, in
305 peripheral training the saccade adaptation always decreases the adaptation strength
306 (green and magenta lines are below the beige line in both the top and the middle
307 panel of Fig. 3B), thus inducing no difference between the FPs.

308 For the AV-aligned data, the *dHEC* model predicts a similar amount of FP-
309 disparity for the central and peripheral experiments (gray dash-dotted line in the
310 bottom panels of Figs. 3C and 3D), while the data show a much larger disparity in
311 the latter experiment. While the current *sHC* model predictions are similarly
312 inaccurate (magenta line is near gray line in both Figs. 3C and 3D), the normalization
313 component of the *nHC* and *snHC* models mostly produces a much closer match to
314 the data (beige and green lines in the two panels). The upper and middle panels show
315 that the normalization mechanism allows the models to follow the data more closely
316 for both fixations and both experiments (i.e., green lines are more often closer to the

317 data than magenta lines), however the match is hard to evaluate given how noisy the
 318 data are (large error bars on the red and blue data).

319

320 Fig. 3. Model predictions (lines) and experimental data (symbols). Each column
 321 corresponds to one combination of central vs. peripheral and AV-aligned vs. AV-
 322 misaligned data. Top and middle rows: Across-subject mean biases (\pm SEM) and
 323 model predictions for the two FPs separately. Bottom row: Differences between the
 324 biases (\pm SEM) for the two individual FPs and corresponding differences between
 325 the model predictions from the top and middle rows.

326

327 Table 1. Fitted model parameters and model performance for the current models
 328 and the dHEC model¹. Δ AIC is the increase in AICc for a given model re. the model
 329 with the lowest AICc. The underlined model names indicate the model version with
 330 substantial evidence of better fit to the data (i.e., rounded up Δ AIC larger than 2).

Model version	Performance			Parameters						
	AICc	Δ AIC	MAE	<u>h</u>	<u>k</u>	<u>c</u>	<u>w</u>	<u>σ</u>	<u>g</u>	<u>m</u>

nHC	345.6	6.9	1.30	1.33	0.30	0.74	0.27	11.15	-	-
sHC	340.8	2.1	1.19	0.91	0.40	0.70	0.19	12.41	0.50	0.09
snHC	338.7	-	1.17	1.33	0.29	0.72	0.24	11.12	0.45	0.11
dHEC	352.7	14.0	1.31	See Lokša & Kopčo ¹ .						

331

332

333 The performance of the models and the fitted parameter values are
 334 summarized in Table 1. The MAE values confirm that the *snHC* model is the most
 335 accurate, and the AICc shows that this improvement is considerable ($\Delta\text{AIC} > 2$), in
 336 particular with respect to the previous *dHEC* model. However, a comparison of the
 337 AICc values for the three model versions also shows that it is mainly the saccade
 338 adaptation mechanism component that improved the overall model performance, as
 339 the omission of this component causes a much larger increase in the AICc than the
 340 omission of normalization.

341 **5. Discussion**

342 The current study introduced a model of the reference frame of the
 343 ventriloquism aftereffect by extending a previous model¹ to consider adaptation in
 344 auditory saccades and a normalized combination of model component outputs. This
 345 model can predict all available human data, which the *dHEC* model¹ could already
 346 predict⁸, as well as the Kopco et al. data^{6,9} which were successfully predicted only
 347 with the current model extensions. The challenge in providing a unified description
 348 of the Kopco et al. data lies in that the two studies provide conflicting results, the

349 former suggesting that the RF of VAE is mixed, while the latter one only observing a
350 HC RF. The current model proposes that the RF of VAE is purely HC, while the
351 mixed-RF result of ref. 6 was driven by the adaptation in auditory saccades which
352 were used as a response method in both those studies. Additionally, the current
353 version of the model can simultaneously predict the new ventriloquism-like
354 adaptation induced by AV-aligned stimuli⁹. For that, it proposes that the effect of the
355 “saccade-related bias” mechanism is combined with the ventriloquism-induced
356 biases using a normalized summation instead of simple summation proposed
357 previously.

358 A primary assumption of this model is that the auditory spatial representation
359 is uniform, consisting of narrow spatial channels. There is growing evidence that, in
360 mammals, auditory space is primarily encoded based on two or more spatial channels
361 roughly aligned with the left and right hemifields of the horizontal plane¹⁵.
362 Considering such opponent processing might provide an alternative mechanism for
363 predicting the differences between the central and peripheral data considered here
364 (see Ref. 1).

365 The mechanisms of auditory saccade adaptation and saccade-related bias
366 proposed in this model need to be experimentally tested, as there is overall a scarcity
367 of data about the auditory saccades and their adaptation^{13,11}. Also, it needs to be
368 examined whether these are two different mechanisms, as implemented here, or
369 whether they are actually a part of one system controlling the auditory saccades¹⁰.
370 Finally, the mechanisms proposed here can be linked with the existing physiological

371 evidence about RF of the signals in the auditory pathway⁷ and about adaptation and
372 normalization of auditory spatial representation¹⁴.

373 In summary, the current model provides testable predictions for future RF of
374 VAE studies using both auditory saccades and other response methods. Its
375 implementation containing all components introduced here and in ref. 1 is publicly
376 available and incorporated into the Auditory Modeling Toolbox to enhance its future
377 testing on new data or generation of predictions for new experiments.

378 **DATA AVAILABILITY**

379 A Matlab / Octave implementation of the model and the experimental data
380 are available in the Auditory Modeling Toolbox
381 (<https://sourceforge.net/p/amtoolbox/code/ci/loksa2025/tree/models/loksa2025.m>).
382

383 **ACKNOWLEDGMENTS**

384 This research was supported by APVV-23-0054, APVV SK-AT-23-0002,
385 and HORIZON-MSCA-2022-SE-01 Grant No. 101129903.

386 **Declaration of Conflicting Interests**

387 The authors declared no potential conflicts of interest with respect to the
388 research, authorship, and/or publication of this article.

389 **References and Links**

390 ¹P. Lokša, and N. Kopčo, “Toward a Unified Theory of the Reference Frame of the
391 Ventriloquism Aftereffect,” *Trends in Hearing*. **27** (2023), doi:
392 10.1177/23312165231201020.

393 ²P. Bertelson, I. Frissen, J. Vroomen, and B. de Gelder, “The aftereffects of
394 ventriloquism: Patterns of spatial generalization,” *Percept Psychophys* **68**, 428–436
395 (2006).

396 ³G. H. Recanzone, “Rapidly induced auditory plasticity: The ventriloquism
397 aftereffect,” *Proc Natl Acad Sci U S A* **95**, 869–875 (1998). doi:DOI
398 10.1073/pnas.95.3.869

399 ⁴T. M. Woods, and G. H. Recanzone, “Visually Induced Plasticity of Auditory Spatial
400 Perception in Macaques,” *Current Biology* **14**, 1559–1564 (2004).

401 ⁵J. M. Groh, and D. L. Sparks, “Two models for transforming auditory signals from
402 head-centered to eye-centered coordinates,” *Biol Cybern* **67**, 291–302 (1992).

403 ⁶N. Kopco, I. F. Lin, B. G. Shinn-Cunningham, and J. M. Groh, “Reference Frame
404 of the Ventriloquism Aftereffect,” *Journal of Neuroscience* **29**, 13809–13814 (2009).
405 doi:Doi 10.1523/Jneurosci.2783-09.2009

406 ⁷V. C. Caruso, D. S. Pages, M. A. Sommer, and J. M. Groh, “Compensating for a
407 shifting world: Evolving reference frames of visual and auditory signals across three
408 multimodal brain areas,” *J Neurophysiol* **126**, 82–94 (2021).
409 doi:10.1152/jn.00385.2020

410 ⁸D. M. Watson, M. A. Akeroyd, N. W. Roachi, and B. S. Webb, “Multiple spatial
411 reference frames underpin perceptual recalibration to audio-visual discrepancies,”
412 PLoS ONE **16** (2021) doi:10.1371/journal.pone.0251827

413 ⁹N. Kopco, P. Loksa, I. F. Lin, J. Groh, and B. Shinn-Cunningham, “Hemisphere-
414 specific properties of the ventriloquism aftereffect,” J Acoust Soc Am **146**, EL177-
415 183 (2019).

416 ¹⁰J. van Opstal, *The Auditory System and Human Sound-Localization Behavior*, (Elsevier,
417 2016), 1st ed. doi:<https://doi.org/10.1016/C2014-0-00203-1>

418 ¹¹L. Yao, and C. K. Peck, “Saccadic eye movements to visual and auditory targets,”
419 Exp Brain Res **115**, 25–34 (1997).

420 ¹²D. N. Gabriel, D. P. Munoz, and S. E. Bohnke, “The eccentricity effect for
421 auditory saccadic reaction times is independent of target frequency,” Hearing Res
422 **262**, 19–25 (2010).

423 ¹³J. Hu, and P. Vetter, “How the eyes respond to sounds.,” Ann N Y Acad Sci.
424 Feb;1532 (2024) doi:10.1111/nyas.15093

425 ¹⁴J. C. Dahmen, P. Keating, F. R. Nodal, A. L. Schulz, and A. J. King, “Adaptation to
426 Stimulus Statistics in the Perception and Neural Representation of Auditory Space,”
427 Neuron **66**, 937–948 (2010). doi:DOI 10.1016/j.neuron.2010.05.018

428 ¹⁵B. Grothe, M. Pecka, and D. McAlpine, “Mechanisms of sound localization in
429 mammals.,” Physiol Rev **90**, 983–1012 (2010).

