DRR & ILD cue weighting in auditory distance perception

Keerthi Doreswamy^{1,2} Norbert Kopčo^{1,2}

 ¹ Institute of Computer Science, P.J. Šafárik University, Košice
² Athinoula A. Martinos Center for Biomedical Imaging,
Harvard Medical School/Massachusetts General Hospital
Ktinoula A.
Harvard Medical School/Massachusetts General Hospital
Exercise
Date: 13-06-24 Place: High Tatras

[Work supported by Horizon <u>Spatial Audio Virtualization & Gamification for Hearing Assessment and Enhancement</u> (European Research Executive Agency; HORIZON-MSCA-2022-SE-01), <u>Computational assessment of plasticity in spatial hearing</u> (Science Grant Agency of the Slovak Rep. VEGA, 2022-24).

Background: Distance Cues

- Multiple cues (for a review, see Zahorik et al., 2005)
- Intensity cue often dominant, but requires familiarity (Warren, 1999)
- Main intensity-independent cues are Inter-aural level difference (ILD) and Direct-to-reverberant energy ratio (DRR) (Kopčo et al., 2012)

Which cue is more important?

Background: Distance Cues

ILD + DRR

Cue weighting in auditory distance perception

Goal: To identify the contribution of the intensity-independent cues (ILD & DRR) to auditory distance perception for nearby sounds in reverberation.

Behavioral experiment with varying cue availability and congruency was conducted for:

- 1. Measuring the sensitivity to the cues
- 2. Measuring distance discrimination performance when cues oppose each other

Methods: Cue Manipulation

Cue availability

A single set of non-individualized binaural room impulse responses (BRIR) are used.

Methods: Cue Manipulation

Cue congruency

Methods: Experimental set up

A single set of nonindividualized binaural room impulse responses (BRIR) are used.

В

Α

Task:

Which of the sounds is closer to the listener?

*Subjects were instructed to ignore the intensity cue and level was roved.

Methods: Modelling

Where: Pc – Percentage of correct performance $d_N' = |\ln s_1 - \ln s_2| / \sigma$, s_1 and s_2 are distances σ subject's estimate

larger d_N' = better performance

 $d_{ILD} = (\ln s_1 - \ln s_2) / \sigma$, Positive values indicate ILD is followed. Negative values indicate that DRR is followed

(Durlach & Braid

(Durlach & Braida, 1969; N. Kopco et al., 2012)

Results: Distance sensitivity

Results: Comparison of incongruent conditions

The two ways of creating the incongruent-cue stimuli are highly correlated

Results: Comparison of incongruent & individual cue weighting

There is a separation between the two groups of subjects in both measures - DRR sensitive and ILD sensitive group

Conclusions & discussion

- Subjects performed better when cues varied with distance congruently distance percepts are based on both ILD and DRR.
- On average, the subjects were more sensitive to ILD than DRR ILD is a dominant cue.
- Between-subject differences were preserved even when the cues were pitched against each other in the incongruent condition. - large variation in the cue weighting.

Conclusions & discussion

- Our results are not consistent with those of Kopčo & Shinn-Cunningham (2011) -Listeners change the cue weighting dependent on the current context and cue availability.
- How the cues are combined and adapt to the context and environment needs to be further examined.

Acknowledgements

Norbert Kopčo

Perception and cognition lab (PCL) Institute of Computer Science P.J. Šafárik University, Košice

Jyrki Ahveninen

Martinos Center for Biomedical Imaging Harvard Medical School/Massachusetts General Hospital

- PCL members
- Institute of Informatics, UPJS

[Work supported by Horizon <u>Spatial Audio Virtualization & Gamification for Hearing Assessment and Enhancement</u> (European Research Executive Agency; HORIZON-MSCA-2022-SE-01), <u>Computational assessment of plasticity in spatial hearing</u> (Science Grant Agency of the Slovak Rep. VEGA, 2022-24).

