Adaptation to Reverberation in Speech and Distance Perception

Norbert Kopčo¹, Eleni Vlahou¹, Keerthi Doreswamy^{1,2} and Jyrki Ahveninen²

¹ Institute of Computer Science, P.J. Šafárik University, Košice

² Martinos Center for Biomedical Imaging, Harvard Medical School/Massachusetts General Hospital

Outline

Reverberation affects many auditory functions:

- speech perception,
- sound localization and externalization,
- separation of sounds in cocktail party situations,
- musical perception / enjoyment ("envelopment")

Effect of reverberation:

- usually detrimental: e.g., speech perception, horizontal localization.
- sometimes **beneficial**: e.g., **distance perception**, musical enjoyment.

Two ALT studies:

- Adaptation to room reverberation in phonetic perception (Eleni)
- fMRI study of cortical distance representation in reverb (Noro)

Adaptation to Room Reverberation in Phonetic Perception

ELENI

Behavioral and fMRI study of distance representation with reverberant cues

Norbert Kopco¹, Keerthi Doreswami^{1,2}, Jyrki Ahveninen²

¹ Institute of Computer Science, P. J. Šafárik University, Košice

² Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital

Intro

Distance perception is important in many everyday situations.

However, the psychoacoustic cues and neural mechanisms underlying it are not well understood.

Kopco et al. (2012) identified intensity-independent cortical area representing distance for lateral sources.

Goals:

- Examine cortical distance representation for frontal sources.
- Is the identified cortical distance area representing distance percept or cues?

Distance perception: Main cues

- Multiple cues (for a review, see Zahorik et al., 2005)
- Intensity cue often dominant but requires familiarity (Warren, 1999)

ILD +

DRR

Main intensity-independent cues (Kopčo et al., 2012):

Binaural

٠

. Direction-dependent

 Anechoic (?and reverberant?) space (Brungart, 1999)

DRR

- Binaural or monaural? (Larsen et al., 2008)
- Direction-independent
- Reverberant space (Kopčo et al., 2012)

DRR only

Direction-dependence of ILD and DRR cues: Adaptation needed.

Distance perception: Cue analysis

Distance dependence of cues varies with frequency. Main cue is likely the monaural near-ear **DRR** (Kopčo, Shinn-Cunningham, 2011).

Cues also vary from room to room. Adaptation to rooms is necessary (Shinn-Cunningham, 2000).

Kopco et al. (2012) examined cortical distance representation of lateral source (w/ ILD and DRR).

DRR ILDs

Cortical auditory distance representation

Kopco et al. (2012) methods:

- lateral sources,
- constant, or varying in distance or intensity,
- sparse-sampling adaptation fMRI,
- behavioral discrimination experiment to confirm intensity-independent sensitivity to distance.

Kopco N, Huang S, Belliveau JW, Raij T, Tengshe C, Ahveninen J (2012). Neuronal Representations of Distance in Human Auditory Cortex. Proceedings of the National Academy of Sciences of USA, 109 (27), 11019-11024.

Cortical auditory distance representation

Kopco et al. (2012) results:

The distance-encoding area identified as a difference between varyingdistance vs. varying intensity.

Surface-based: **Area** in **planum temporale** (PT) and **superior temporal gyrus** (STG) contralateral to stimuli.

Kopco N, Huang S, Belliveau JW, Raij T, Tengshe C, Ahveninen J (2012). Neuronal Representations of Distance in Human Auditory Cortex. Proceedings of the National Academy of Sciences of USA, 109 (27), 11019-11024.

Cortical auditory distance representation

Kopco et al. (2012) results:

The distance-encoding area identified as a difference between varying-distance vs. varying intensity.

Volume-based: **Area** in **planum temporale** (PT) and **superior temporal gyrus** (STG) contralateral to stimuli.

Kopco N, Huang S, Belliveau JW, Raij T, Tengshe C, Ahveninen J (2012). Neuronal Representations of Distance in Human Auditory Cortex. Proceedings of the National Academy of Sciences of USA, 109 (27), 11019-11024.

Current study: Experiment 1 - Frontal

Using methods similar to Kopco et al 2012:

- 1. Compare behavioral sensitivity to lateral and frontal distance variation.
- 2. Examine distance representation for frontal sources only containing DRR.

Hypothesis:

If the identified area encodes DRR cue, or if it encodes distance percept, then frontal activation will be similar to lateral activation from Kopco et al. (2012).

Exp 1: Behavioral discrimination task

- Stimuli: 300-ms noise bursts
- virtual reverberant environment
- nonidividualized BRIRs recorded in a small classroom (Shinn-Cunningham et al., 2005)
- 2 sounds presented sequentially (ISI = 1s) at varying distance in front or on the side of listener (fixed within block)
- Task: Which of the sounds is closer to the listener?
- Subjects instructed to ignore the intensity cue.
- Relative judgment

Exp 1: behavioral results

Performance **worse** for **frontal** than **lateral** sources.

Either because multiple cues available, or because **DRR** provides better information (varies over larger range) on the side.

Frontal performance still good for these stimuli, so fMRI can be performed.

Exp 1: fMRI experiment

Methods similar to Kopco et al. (2012) :

- frontal sources,
- ONLY 2 CONDs: varying in distance or intensity, in random order,
- sparse-sampling adaptation fMRI.

Exp 1: fMRI results

The distance-encoding area identified as a difference between varying-distance vs. varying intensity.

Area in **planum temporale** (PT) and **superior temporal gyrus** (STG). **Activation bilateral**.

Exp 2: distance percept vs. cues

Is this the representation of distance, or of individual cues (ILD/DRR)?

In general, how are the cues combined?

Exp 2:

- contrast condition with ILD/DRR congruent vs. incongruent.
- Significant difference -> area represents "distance", otherwise "cues".

Exp 2: Methods

- lateral sources,
- varying ILD & DRR congruently or incongruently, or varying intensity,
- sparse-sampling adaptation fMRI,
- behavioral experiment to confirm higher sensitivity for congruent than incongruent stims.

Exp 2: behavioral results

Performance **worse** with **incongruent** than **congruent** cues -> distance percept is weaker with incongruent cues.

Difference in fMRI activation between congruent and incongruent conditions is expected to indicate representation of distance percept.

Exp 2: fMRI results (tentative)

No significant differences between congruent and incongruent conditions in univariate analysis (N = 13).

Split-half correlation analysis (MVPA) performed in left-hemisphere cortical subregions:

- significant (p < 0.05) activations in:
 - subregion of lateral Superior Temporal Gyrus (div. 2)
 - Middle Temporal Gyrus
 - Lateral Occipital Temporal Sulcus

Representation either corresponding to cues, not percept, or representation more complex than what univariate analysis can identify.

Summary

Distance perception is highly adaptive.

It's difficult to identify cues used in a specific context and underlying neural mechanisms.

Current results show that a PT + STG area in "parietal" stream:

- encodes intensity-independent distance,
- for judgments based both on **DRR** (frontal) and **ILD** & **DRR** (lateral),
- hemisphere of activation varies with source laterality,

Areas posterior to A1 likely are a complex computational center that:

- encodes auditory spatial information in all dimensions (Higgins et al., 2017)
- is consistent with "What & Where" model (Rauschecker & Tian, 1995)

(Doreswamy et al. poster on adaptation in cue weighting for distance perception.)