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A recent study showed that human listeners are able to localize a short speech target simultaneously

masked by four speech tokens in reverberation [Kopčo, Best, and Carlile (2010). J. Acoust. Soc.

Am. 127, 1450–1457]. Here, an auditory model for solving this task is introduced. The model has

three processing stages: (1) extraction of the instantaneous interaural time difference (ITD) infor-

mation, (2) selection of target-related ITD information (“glimpses”) using a template-matching pro-

cedure based on periodicity, spectral energy, or both, and (3) target location estimation. The model

performance was compared to the human data, and to the performance of a modified model using

an ideal binary mask (IBM) at stage (2). The IBM-based model performed similarly to the subjects,

indicating that the binaural model is able to accurately estimate source locations. Template match-

ing using spectral energy and using a combination of spectral energy and periodicity achieved good

results, while using periodicity alone led to poor results. Particularly, the glimpses extracted from

the initial portion of the signal were critical for good performance. Simulation data show that the

auditory features investigated here are sufficient to explain human performance in this challenging

listening condition and thus may be used in models of auditory scene analysis.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4950699]
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I. INTRODUCTION

Human listeners are able to attend to and understand

one specific talker in complex acoustic settings, such as

reverberant rooms in which multiple talkers speak at the

same time (e.g., Bronkhorst, 2000). One aspect of this ability

is the localization of the attended target talker in a multi-

talker environment. How the monaural signal-related audi-

tory features, used for the discrimination of the target against

the maskers, are combined with binaural features to identify

the location of the target is still largely unknown (e.g., see

Shamma and Fritz, 2014). This study examines this question

by simulating a localization task in a multi-talker setting

using an auditory model, and comparing it to human data.

Periodicity and spectral energy were investigated as monau-

ral features; interaural time differences were used as binaural

features. One important characteristic of the proposed model

is that it uses a priori information about the target speech to-

ken, similar to the optimal detector approaches established

in psychoacoustic detection models (e.g., Dau et al., 1996).

This way, information about the target is used optimally,

making it possible to assess the relative salience of the fea-

tures and their interaction in solving the task, which is the

main purpose of this study.

The ability of human listeners to localize speech in com-

plex listening scenarios depends on a number of factors. It

has been shown that frontal azimuth localization perform-

ance degrades with decreasing SNR (Kopčo et al., 2010),

increasing number of maskers (Langendijk et al., 2001),

masker uncertainty (Kopčo et al., 2010) and reverberation

(Giguère and Abel, 1993). Experimental results suggest that,

primarily, the binaural features at the onset of a sound

(Houtgast and Aoki, 1994; Freyman et al., 1997), or at rising

segments of the signal envelope (Dietz et al., 2013) are used

for localization.

Auditory modeling of frontal azimuthal localization has

been done using physiologically inspired models based on

normalized cross-correlation (Faller and Merimaa, 2004;

Roman et al., 2003) or on the extraction of instantaneous

interaural phase differences (IPDs; Dietz et al., 2011). In

some cases, these models contain a measure for identifying

robust binaural information: Only binaural information with

a high interaural correlation (Faller and Merimaa, 2004), or

a high interaural vector strength (IVS; Dietz et al., 2011) is

taken into account to estimate locations. Using these meas-

ures is especially important for scenarios that include rever-

beration and multiple sound sources. It has been shown that

these models can accurately estimate the locations of multi-

ple talkers. However, the models alone are not able to deter-

mine which of the segregated sources is the target and which

are the maskers. Furthermore, the models’ performance was

not previously compared to human data.

To identify a speech target in a multi-talker mixture, fur-

ther features are needed. It has been shown that periodicitya)Electronic mail: angela.josupeit@uni-oldenburg.de
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is an important cue for distinguishing between different talk-

ers (e.g., Darwin, 1981; Alain et al., 2005). Another impor-

tant cue is the spectral profile (Gockel and Colonius, 1997;

Gockel, 1998).

In a typical auditory scene analysis task, several features

need to be integrated to distinct auditory objects. One princi-

ple that guides this integration is that temporally and spec-

trally coherent features are bound to the same object

(Elhilali et al., 2009; Shamma et al., 2011; Teki et al.,
2013).

The present study introduces an auditory model that

simulates the task of localizing a female speech token pre-

sented simultaneously with four male speech tokens

arranged in different spatial configurations (Kopčo et al.,
2010). The scene is complex in the sense that it has a high

number of maskers, a relatively low SNR of �6 dB, a simul-

taneous onset of target and maskers, a complete temporal

overlap of the target word by the masker words, short utter-

ances (mostly< 300 ms), a slightly reverberant environment,

unknown masker words, and an unknown spatial masker

configuration.

This study investigated three different aspects of the

simulated localization task. First, it examined whether an au-

ditory binaural model (Dietz et al., 2011) is suitable for mod-

eling human localization performance in this challenging

condition when optimal selection of target-related binaural

information is assumed. For the optimal selection of target-

related features, an ideal binary mask (IBM) was used

(Wang, 2005; Barker and Cooke, 2007). Second, it investi-

gated how target-related features can be selected using

a priori knowledge about the unmasked target utterance. For

this, we adopted the optimal detector method developed to

predict human detection performance (e.g., Dau et al.,
1996). In particular, a template was generated that consisted

of the extracted monaural features of the unmasked target.

Then, a template-matching procedure compared the template

with the respective features from the multi-talker input sig-

nal and selected the matching time-frequency bins. Under

the assumption that auditory features occurring in the same

time-frequency bin belong to the same source (Shamma

et al., 2011), the target-related binaural information was read

out from the selected bins, whereas the binaural information

from the remaining bins was assigned to the maskers. As

monaural features, periodicity, spectral energy, and a combi-

nation of both features were compared to investigate the rel-

ative salience of these features. Finally, the present study

investigated the importance of early vs late portions of the

signal in the localization task. This was done by analyzing

the localization accuracy of the model for the early and late

signal portions, and by manipulating the selection of target-

related information using mixtures of template-matching

procedures and optimal IBM-based selection.

II. MODEL DESCRIPTION

Figure 1 shows the outline of the model. The input sig-

nal was a multi-talker signal, as used by Kopčo et al. (2010).

The task was to estimate the location of the target—the word

“two” uttered by a female talker—presented simultaneously

with four different male masker speech tokens originating

from four different locations. A detailed description of the

stimuli is given in Sec. III A. First, the left and right channels

of the input signal were preprocessed by a model of auditory

periphery, and auditory features were extracted from the pre-

processed signals (Fig. 1, model part A). Binaural features

were calculated using a slightly modified version of the bin-

aural model of Dietz et al. (2011); monaural features were

periodicity (Chen and Hohmann, 2015) and spectral energy.

Second, target-related binaural features were selected using

a binary mask (BM) (Fig. 1, model part B). This BM could

either be an IBM (which replaces the stages in the dashed-

dotted box), derived by analyzing the target and masker sig-

nals separately, or BMs based on a template-matching proce-

dure that compared the monaural features derived from the

target alone with those derived from the target and masker

mixture signal. Third, the final target location was estimated

based on the distributions of selected and not-selected binau-

ral features across the whole utterance (Fig. 1, model part C).

It is important to note here that the binaural and periodicity

features were pre-selected according to a robustness measure.

It is thus assumed that each pre-selected feature value mainly

represents a single sound source and that a binary decision as

implemented here is sufficient to separate target- and

background-related feature values. A detailed description of

the three model parts is given in the following.

FIG. 1. Model outline. Part A: The left and right ear signals are first prepro-

cessed by a peripheral model. After that, binaural and monaural features are

extracted; the dashed box identifies the processing steps used in the binaural

model adapted from Dietz et al. (2011); the extracted monaural features are

periodicity and spectral energy, derived from the left and right channel sig-

nals individually. Part B: Based on the monaural features, a template-

matching procedure is applied from which BMs are estimated. The selection

of target-related binaural features is based on these BMs, or on the IBM (in

which case the stages enclosed in the dash-dotted box are replaced by IBM

extraction). Part C: The target location is estimated based on the binaural in-

formation selected as belonging to the target as well as on the maskers infor-

mation in all frequency channels.
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A. Feature extraction

1. Auditory preprocessing

The left and right multi-talker input signals passed a

preprocessing stage based on a model of the auditory periph-

ery as used by Dietz et al. (2011). In brief, this model

includes a middle ear band-pass filter, a gammatone filter

bank with 23 filters ranging from approximately fc¼ 200 Hz

to fc¼ 5 kHz, followed by an instantaneous compression,

half wave rectification and a low-pass filter. In addition to

the original model by Dietz et al. (2011), a differentiator was

implemented after the low-pass filter to remove the DC com-

ponent before extracting periodicity features as described in

Sec. II A 3. The signals then passed a fine structure filter (for

fc < 1400 Hz) or envelope filter (for fc > 1400 Hz). In line

with the original model, the fine structure filters were set to

the respective center frequency fc of each filter and a band-

width of fc=3. The envelope filter was set to a center fre-

quency of fm¼ 250 Hz and a bandwidth of 250 Hz to cover

the full range of the target talker fundamental frequency (ca.

170–270 Hz).

2. Binaural features

Binaural features were extracted as described by Dietz

et al. (2011). This model computes the IPDs as a function of

time t in each frequency band fc. ITDs are calculated from

IPDs and the sub-band instantaneous frequency. Interaural

level differences (ILDs) are extracted from the preprocessed

signals before the differentiation stage; the sign of the ILD is

used to resolve IPD ambiguities in the fine structure filters.

ITDs are low-pass filtered using a time constant s, which

defines the binaural temporal resolution. As a measure for

the robustness of the binaural features, the IVS was calcu-

lated. Only those binaural feature values are further proc-

essed whose corresponding IVS values exceed a threshold

IVS0. A second measure for robustness is the “rising flanks”

criterion. That is, only those features are further processed

where the derivative of the IVS time signal is positive. As a

binaural time constant, we chose s ¼ 1=fc for the fine struc-

ture channels and s ¼ 1=fm for the envelope channels; as a

threshold for robust information, we chose IVS0¼ 0.9. In the

original Dietz et al. (2011) study, these parameters were set

to s ¼ 5=fc resp. s ¼ 5=fm and IVS0¼ 0.98. The parameters

were changed in this study to achieve a sufficiently high

number of robust features during the short duration of the

target utterance.

ITDs were mapped to azimuth angles a1ðt; fcÞ using a

fitting function that was calculated similarly to the one

described by Dietz et al. (2011): First, we generated speech

signals based on the speech corpus employed (Kidd et al.,
2008); each signal consisted of one random word uttered by

one random talker of the experiment. This utterance was

convolved with the binaural room impulse response (BRIR)

for a specific direction ranging from �60� to 60� in 10�

steps; the same BRIRs were used to generate the input sig-

nals in the simulations (see Sec. III A). The final 0.8 s of

each signal were discarded because they tended to be domi-

nated by reverberant energy. Second, we extracted ITDs and

ILDs of these signals, as described earlier; as parameters,

s ¼ 2:5=fc or s ¼ 2:5=fm and IVS0¼ 0.98 were chosen.

Third, we calculated one ITD for each azimuth direction a as

the median of the ITDs across time. For each azimuth, 25

iterations with random words and random talkers were done

and the ITD was found as the median across these iterations,

resulting in values ITDðaÞ for each fc. Fourth, a linear fitting

function was applied to the inverse values aðITDÞ for each

fc. The parameters s and IVS0 for the calculation of the

lookup table were chosen to select robust binaural informa-

tion for the single-source reference signal and differed from

the parameters used for the extraction of binaural features in

the simulations. The target-localization in quiet (cf. Fig. 2),

however, was not influenced by the change in the parameter

values.

Azimuth signals a1ðt; fcÞ were then downsampled from

fs1 ¼ 44:1 kHz to fs ¼ 1 kHz in order to reduce storage

usage and to provide better temporal alignment with the peri-

odicity and spectral energy features, both of which were

extracted with a sampling frequency of 1 kHz. The down-

sampling algorithm calculated the mean value of IVS-

selected binaural information every 1 ms, resulting in a sam-

pling frequency of fs ¼ 1 kHz. The resulting signal is

referred to as aðt; fcÞ.

3. Periodicity features

Periodicity features were extracted from the prepro-

cessed signals. They were based on the extraction of the nor-

malized “synchrogram” Sðt; fc;PÞ (Chen and Hohmann,

2015). The normalized synchrogram Sðt; fc;PÞ is the ratio of

the harmonic signal energy for the period P and the total sig-

nal energy in the same time window for a [t, fc] bin, com-

puted for a number of tested candidate periods P0. If

Sðt; fc;PÞ ¼ 1, the signal is fully harmonic with a period P;

if Sðt; fc;PÞ ¼ 0, there is no harmonic energy at the period P.

FIG. 2. Median target localization bias from actual target location as a func-

tion of target location without maskers (simulation A, control condition).

The dashed line, the gray filled area and the thin gray lines indicate the me-

dian, the upper and lower quartiles, and the minimum and maximum of the

subjects’ individual median biases, respectively (data from Kopčo et al.,
2010). The solid line represents the model results.
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It was therefore assumed that the locations of local maxima

with high peak values of the synchrogram function across

candidate periods P0 correspond to the dominating funda-

mental period P0 and its multiples. The extraction of perio-

dicity features is explained in detail in the following.

The set of all tested periods was given by

P0 ¼ fP0min;P
0
min þ DP;…;P0max � DP;P0maxg; (1)

with P0min¼1=ð1400HzÞ;P0max¼1=ð80HzÞ and DP¼1=fs1,

with fs1¼44:1kHz.

The set of all local maxima of the synchrogram for one

given [t, fc] bin was given by

Pmaxðt; fcÞ ¼ fP 2 P0 j Sðt; fc;PÞ is a local maximumg:
(2)

A local maximum was defined as a value which is larger

than its two neighboring values. The periodicity features

were chosen from the set of local maxima Pmaxðt; fcÞ if they

fulfill certain energy requirements: The largest local maxi-

mum had to exceed a value of P1, making sure that there is

enough harmonic energy in the signal. If this requirement

was fulfilled, all local maxima exceeding a certain threshold

P2 were chosen as periodicity features,

P0ðt; fcÞ ¼ fP 2 Pmaxðt; fcÞ j max
P�2Pmaxðt;fcÞ

ðSðt; fc;P
�ÞÞ

> P1 � Sðt; fc;PÞ > P2g: (3)

P1 and P2 were set to 0.9 and 0.8, respectively, in fine

structure bands (fc < 1400 Hz) or 0.5 and 0.4 in envelope

bands (fc > 1400 Hz), respectively. These values were cho-

sen to make sure that periodicity features represent sub-band

signal sections with a salient predominant periodicity, simi-

lar to the coherence-based selection of binaural features. The

periodicity features were determined separately for the left

and right channels and in the following, they are referred to

as P0lðt; fcÞ and P0rðt; fcÞ, respectively.

4. Spectral energy features

Spectral energy features Elðt; fcÞ and Erðt; fcÞ were cal-

culated from the preprocessed signals. They were calculated

every 1 ms as the mean signal power in a 10-ms rectangular

moving window.

B. Selection of target-related binaural information

The binaural signal aðt; fcÞ contains azimuth information

of target and masker stimuli. The selection of target-related

information was based on BMs that label the target-

dominant [t, fc] bins, or “glimpses,” with a value of 1 and all

other bins with 0,

aselðt; fcÞ ¼ faðt; fcÞjBMðt; fcÞ ¼ 1g: (4)

The selection mechanism was restricted to the initial

portion of the stimulus (t 2 ½0; 300�ms), which contained

direct-sound energy of the target. In this study, BMs were

estimated in several different ways: First, as an IBM; second,

via a template-matching procedure of periodicity features

(BMP0), spectral energy features (BME), or a combination of

both (BME,P0); third, using a combination of IBM for the

early signal portions and BM for the late signal portions, or

vice versa. Each of these procedures is explained in the

following.

1. IBM

The IBM is defined as

IBMðt; fcÞ ¼
1 if SNRðt; fcÞ > 0 dB

0 if SNRðt; fcÞ < 0 dB;

�
(5)

where SNRðt; fcÞ is the ratio of target signal energy and

masker signal energy; these energies were calculated analo-

gously to the multi-talker energy described in Sec. II A 4.

For this approach, full a priori knowledge about the sepa-

rated target and masker signals is needed.

2. Template matching

The selection of target-related binaural information was

based on a template-matching procedure that used the mon-

aural features of the target alone as a template. This is in line

with the Kopčo et al. (2010) experiment, in which the sub-

jects had the opportunity to create a template, as the experi-

ment included a target-alone control condition prior to the

main experiments (see also simulation A in Secs. III and

IV). To create the BMs BMP0; BME, and BME,P0 in each

simulated experimental trial, the template of the target’s pe-

riodicity and/or spectral energy was matched with the corre-

sponding features extracted from the multi-talker mixture.

The derivation of the templates and the computation of the

BMs is described in detail in the following.

a. Periodicity template matching. To calculate the peri-

odicity template P0tarðt; fcÞ, periodicity features were

extracted as described in Sec. II A 3. for all possible

unmasked target utterances (11 locations with 2 channels

each), referred to as the sets P0tar;iðt; fcÞ; i ¼ 1;…; 22.

Second, a probability density function (PDF) PDFðt; fc;PÞ
across all sets P0tar;iðt; fcÞ was calculated as follows:

PDFðt; fc;PÞ ¼ C
X22

i¼1

X
P002P0tar;iðt;fcÞ

N ðP00; 10�4 sÞ

0
@

1
A;

(6)

where Nðl; rÞ denotes a Gaussian function with an expected

value l and standard deviation r. The factor C was chosen

so that the integral of the PDF was one. The resulting PDF

was usually a multi-peak function with peaks at multiples of

the fundamental period. Third, the peak positions of the PDF

were chosen as the possible candidates for the template. A

candidate contributed to the template P0tarðt; fcÞ if a mini-

mum number of period values from the original sets

P0tar;iðt; fcÞ lay 610�4 s from a candidate. These minimum

numbers were set to 12 for the fine structure filters and 6 for

the modulation filters.
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In the template-matching procedure, a given multi-

talker input’s periodicity, P0ðt; fcÞ, was evaluated against the

periodicity template, P0tarðt; fcÞ, separately for each [t, fc]
bin. Two criteria had to be fulfilled for the input at each ear

to consider it a match to the template: (1) the number of peri-

odicity values had to be similar between P0ðt; fcÞ and

P0tarðt; fcÞ, and (2) the periodicity values found in the input

had to be similar to the periodicity values in the template.

Specifically, the two criteria were defined as follows.

Criterion 1: The difference of the number of periodicity

values in one [t, fc] bin should not exceed a threshold of 2,

Aðt; fcÞ ¼
1 if j#P0ðt; fcÞ � #P0tarðt; fcÞj � 2

0 else:

�
(7)

The symbol # defines the number of elements in a set. The

rule is applied to both the left and right channel periodicity

features separately; the corresponding variables are termed

Alðt; fcÞ and Arðt; fcÞ.
Criterion 2: This criterion had two versions depending

on whether there were fewer values in the multi-talker input

or in the template. If the number of values in the multi-talker

input was lower than in the template, then for each periodic-

ity value in the multi-talker input there had to be a value in

the template that did not differ by more than 0.1 ms. If the

number of values in the template was lower than in the

multi-talker input, for each periodicity value in the template

there had to be a value in the multi-talker input that did not

differ by more than 0.1 ms. Formally,

Bðt; fcÞ ¼
1 if 8P0 2 P0xðt; fcÞ : minP002P0yðt;fcÞðP0� P00Þ < 0:1 ms

0 else;

�
(8)

with

P0xðt; fcÞ ¼
P0ðt; fcÞ if #P0ðt; fcÞ < #P0tarðt; fcÞ
P0tarðt; fcÞ else;

�
(9)

P0yðt; fcÞ ¼
P0tarðt; fcÞ if #P0ðt; fcÞ < #P0tarðt; fcÞ
P0ðt; fcÞ else:

�
(10)

The second rule was also implemented for the left and right channel features individually; the corresponding variables are
termed Blðt; fcÞ and Brðt; fcÞ. The BMP0 was estimated on the basis of the aforementioned rules that had to apply for both the
left and the right channel,

BMP0ðt; fcÞ ¼
1 if Alðt; fcÞ ¼ Arðt; fcÞ ¼ Blðt; fcÞ ¼ Brðt; fcÞ ¼ 1

0 else:

�
(11)

b. Spectral energy template matching. The spectral

energy template was calculated as the mean of all spectral

energy features of the 22 unmasked target utterances. BM

estimation based on energy template matching was based on

the absolute difference between target template and left and

right multi-talker signal DElðt; fcÞ ¼ jElðt; fcÞ � Etarðt; fcÞj
and DErðt; fcÞ ¼ jErðt; fcÞ � Etarðt; fcÞj,

BMEðt;fcÞ¼
1 if DElðt;fcÞ<2:5dB�DErðt;fcÞ<2:5dB

0 else:

�

(12)

c. Combination of periodicity and spectral energy. The

BM for the combination of periodicity and spectral energy

features was calculated as the product

BME;P0ðt; fcÞ ¼ BMP0ðt; fcÞ � BMEðt; fcÞ: (13)

That means that the BME,P0 is only one in the [t, fc] bins

in which both the periodicity features and the spectral energy

features matched the template.

3. BMs based on early vs late signal portions

To examine how different temporal portions of the sig-

nals contribute to the BMs, an additional analysis was per-

formed in which BMs of the early portion of the signal

(t � 100 ms) were treated separately from the BMs of the late

portion of the signal (t > 100 ms). These BMs are referred to

as BMearly and BMlate, respectively. Combinations of different

BM types were denoted as additions of BMearly and BMlate,

e.g., the combination of IBM in the onset and BMP0 in the off-

set was termed IBMearly þ BMlate
P0 .

C. Estimation of target location

To estimate the target location, two PDFs of the location

estimates were generated, one based on the selected bins,

PDFselðaÞ, and one based on the not-selected bins, PDFnselðaÞ.
The PDFs were generated by summing up Gaussian kernels

centered at the selected or not-selected estimated locations at

each [t, fc] bin,
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PDFselðaÞ ¼ C1 �
X

t

X
fc

Nðaselðt; fcÞ; rÞ; (14)

PDFnselðaÞ ¼ C2 �
X

t

X
fc

Nðanselðt; fcÞ; rÞ: (15)

C1 and C2 were chosen so that the PDF integrals were

one. The target location estimate, â, was then defined as

â ¼ argmax
a
ðb � PDFselðaÞ � PDFnselðaÞÞ: (16)

The factor b controls the relative influence of selected

and not-selected azimuth values for the decision. On the

basis of pilot experiments, we set b¼ 3 and the standard

deviation of the Gaussian kernels r ¼ 30�. This relatively

large standard deviation was chosen because it generates

smooth PDFs and thus leads to robust predictions. The sub-

traction of PDFnselðaÞ suppresses the remaining masker-

related information in the target-related PDF and resembles

the active suppression of masker positions (Dong et al.,
2013).

III. METHODS

A. Stimuli

The speech material used here was the same as that used in

Kopčo et al. (2010; speech corpus of Kidd et al., 2008). The tar-

get to be localized was a female voice uttering the word “two,”

which was kept constant throughout the experiment. The target

azimuthal location was between�50� and 50� in 10� steps. The

maskers were four male voices uttering a random monosyllabic

word which completely overlapped the target word. Each target

and masker utterance had approximately the same energy, so

that the target-to-masker ratio was 0 dB, as stipulated by Kopčo

et al. (2010). The resulting SNR was approximately�6 dB. The

male talkers were the same throughout the experiment with

the same left-to-right order. Five masker location patterns were

used: ½�50;�40;�30;�20��; ½20; 30; 40; 50��; ½�20;�10;
10; 20��; ½�50;�40; 40; 50��S, and ½�40;�10; 10; 40��.

The input signals were generated using virtual acoustics.

Clean speech tokens were set to a root-mean-square (RMS)

of 1 before convolution with a BRIR for the respective

angle. BRIRs were measured in the ears of a human listener

in a slightly reverberant room (Kopčo and Shinn-

Cunningham, 2011). The distance between head and sound

sources was 1 m and the azimuth spacing was 10�. All other

methods for measuring BRIRs were the same as described

by Shinn-Cunningham et al. (2005). In our study, we used

only the BRIRs from the left hemisphere and switched left

and right channels for the other hemisphere.

B. Simulations

Table I shows an overview of all of the simulations in

this study. To assess the model performance for the localiza-

tion of the unmasked target, a control condition (simulation

A) was simulated in accordance with the psychoacoustic

study of Kopčo et al. (2010). In this simulation, no selection

mechanism was implemented, so that all extracted azimuth

angles aðt; fcÞ contributed to the estimated target location

[cf. Sec. II C, Eq. (16)],

â ¼ argmax
a
ðPDFðaÞÞ: (17)

Consistent with the computations used for the masked

localization simulations, the PDF was calculated based on

Gaussian kernels with a standard deviation of r ¼ 30�. Only

one model run was performed for each target location,

because the target utterance was kept constant, in line with

Kopčo et al. (2010). The model did not simulate any of the

localization inaccuracies that presumably occur in the psy-

choacoustic experiment, e.g., due to the head tracking

procedure.

Simulation B investigated the model with the selection

of target-related binaural information based on the IBM (see

Sec. II B 1). The IBM selection requires full a priori knowl-

edge of the target and masker signals in isolation. The simu-

lation can be seen as an investigation of the performance of

the binaural model as well as the performance of the location

estimation mechanism.

Simulation C investigated the model using BMs based

on template matching using periodicity, spectral energy, or a

combination of both features (BMP0; BME, or BME,P0, see

Sec. II B 2).

Simulation D investigated how the model performance

depends on information in the early (first 100 ms of the input)

vs late portions of the signal (rest of the input). For this, the

BMs from simulations B and C were combined such that ei-

ther the IBM (from simulation B) was used for early signal

portions and BMP0; BME, or BME,P0 (from simulation C) for

late signal portions, or vice versa (see Sec. II B 3).

Furthermore, the BMs BMP0; BME, and BME,P0 esti-

mated using these procedures were compared to the IBM in

terms of positive predictive values (PPVs), negative predic-

tive values (NPVs), accuracy (ACCs), and glimpse propor-

tions (GPs). The PPV was defined as the total number of true

positives, i.e., bins for which both the given BM and the

TABLE I. Overview of performed simulations.

Simulation Description

A Control condition (target alone)

B Multi-talker condition with IBM-based selection

C Multi-talker condition with selection based on template matching using periodicity (BMP0), spectral energy (BME)

and a combination of both features (BME,P0)

D Influence of early and late portions of the signal

2916 J. Acoust. Soc. Am. 139 (5), May 2016 Josupeit et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.197.62.201 On: Fri, 20 May 2016 17:47:23



IBM is one, divided by the number of bins with a value of

one in the BM. Thus, it is basically a measure of how many

of the selected glimpses are actually target-related, as

defined by the IBM, serving as the “gold standard.” The

NPV is defined as the total number of true negatives, i.e.,

bins for which both the given BM and the IBM are zero, di-

vided by the total number of bins with a value of zero in the

BM. Analogous to the PPV, the NPV is a measure of how

many of the not-selected glimpses are actually not target-

related, as defined by the IBM. The ACC is defined as the

sum of true positives and true negatives divided by the total

number of bins. The GP is defined as the number of ones in

a BM divided by the total number of bins.

C. Descriptive statistics

In the experiment of Kopčo et al. (2010), seven subjects

Si participated, each of them performing ten runs per target

position / (11 total) and masker pattern p (5 total). Masker

words and masker patterns were randomized across ð/; pÞ
conditions and subjects. For the model simulations, 50 runs

were performed for each / and p with randomized masker

words.

For illustration and descriptive statistics, results for the

spatially symmetric (masker) conditions, p¼ 3, 4, and 5

were merged across hemispheres. Furthermore, masker pat-

terns p¼ 1 and p¼ 2 are spatially anti-symmetric, and their

results were merged after mirroring the data of pattern 2.

That is, for each target location the number of runs was

doubled by adding the target location estimations of the re-

spective mirrored location, so that 20 runs were examined

instead of 10 (subjects) or 100 instead of 50 (model), except

for / ¼ 0� in masker patterns p¼ 3 through p¼ 5. The same

merging was done for the control condition with the differ-

ence that the subjects performed 20 runs per target location

so that 40 runs were examined for the mirrored data. This

procedure reduced the influences of the sequence of maskers

and room asymmetries on the results.

Model and subject data were compared with regard to

the median bias and interquartile range (IQR) across runs

within a ð/; pÞ condition. The median bias is a measure of

the deviation from perfect localization, referred to here as

DSi
ð/; pÞ for the subject Si and DMð/; pÞ for the model. The

IQR was used as a measure for the variation across different

runs for a given ð/; pÞ condition, referred to as IQRSi
ð/; pÞ

for the subject Si and IQRMð/; pÞ for the model.

As a measure for the similarity between model and sub-

ject performance, global and local root-mean-square errors

(RMSEs) were used. These RMSEs were always calculated

with reference to the medians across individual DSi
ð/; pÞ and

IQRSi
ð/; pÞ, referred to as DSð/; pÞ and IQRSð/; pÞ, respec-

tively. The global bias RMSE was used to assess overall per-

formance averaged across location and pattern. It was

defined as

RMSED;global;X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X50�

/¼�50�

X5

p¼1

DS /;pð Þ �DX /;pð Þð Þ2
vuut ;

(18)

where X¼ Si for the subject and X¼M for the model. The

local bias RMSEs were used to assess performance sepa-

rately for each combination of pattern and target location.

They were defined as

RMSED;local;Xð/; pÞ ¼ jDSð/; pÞ � DXð/; pÞj; (19)

with the variable X as used in Eq. (18). The calculation of

global and local IQR RMSEs was done analogously.

The reference measure for the comparison of model and

subject results was the mean and standard deviation of the

individual subject’s global and local RMSE. The perform-

ance of the model was considered similar to human subject

performance if the model RMSE lay within two standard

deviations of the across-subject RMSE mean. For a rough

statement about whether human and model performance

were comparable or not, and how large the deviation was,

the global RMSEs were used. To make a statement about the

difference between human and model performance for indi-

vidual ð/; pÞ conditions, the local RMSEs were used.

IV. RESULTS

A. Simulation of control condition

Model and subject median biases for the control condi-

tion are shown in Fig. 2. The results for the �50� to �10�

locations were mirror-flipped and combined with the 50� to

10� location results. As the same target utterance was used for

all runs at all locations, the model did not show any variance

across runs. Hence, the results for model and subject IQRs

across runs are not shown here. The model results were in

good agreement with the subject results. This was reflected in

the model’s global RMSE of 3:5�, compared to the mean sub-

ject global RMSE of 3:6�62:9�; that is, the global RMSE of

the model lay within 0.06 subject standard deviations of their

global RMSE. Analysis of the local RMSE revealed that the

model was in good agreement with the subject data for all tar-

get locations, as can be seen in Fig. 2. At the 40� location, the

model and subject median biases differed considerably. At

this location, the mean local RMSE of the subjects was

4:68�64:27� compared to a local RMSE of 8:24� for the

model; due to the large variability across subject estimates,

the model still fulfilled the criterion of not differing by more

than two standard deviations from the mean subject RMSE.

B. Simulation using the IBM

Figure 3 shows the model and subject median biases

and IQRs across runs for the masked localization data. The

human bias data showed similar localization estimates across

patterns (top row in Fig. 3). The main feature across the pat-

terns was that the most lateral sources tended to be biased

medially. This effect was strongest in masker pattern 1 for

the lateral target locations near the distractors (50�) and

weakest for masker pattern 1 for the target locations far from

the distractor (�50�). The model captured the general trend

considerably well. However, it did not show the asymmetry

between the data at / ¼ �50� and / ¼ 50� for masker pat-

tern 1. For the IQRs, human data showed a similar behavior
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across masker patterns (bottom row in Fig. 3). In particular,

the IQRs for lateral target positions tended to be larger than

for medial target positions. In most cases, this trend was

observable in the model data. For masker pattern 1, the IQR

in the human data was higher than the model IQR for the tar-

get locations near the distractors and lower than the model

IQR for the target locations far from the distractors. A simi-

lar trend, although weaker, can be seen for patterns 4 and 5.

However, there the model predictions seem to be less stable.

So the model did not capture well the difference between

human IQRs near vs far from the maskers. Generally, the

model showed lower IQRs than the subjects, which might be

probably due to the fact that the model incorporated ideal-

ized knowledge about the target-dominant [t, fc] bins that the

subjects did not have.

The global RMSEs for the median biases were

4:2�62:9� for the subjects and 3:5� for the model (see also

Table II). For the IQRs the global RMSEs were 3:6�61:7�

for the subjects and 2:5� for the model. That is, for both the

biases and the IQRs, the global RMSEs of the model were

within two standard deviations of the mean global RMSEs of

the subjects. This indicates that the overall model predictions

did not differ significantly from the subject data and that the

FIG. 3. Masked target localization modeled using the IBM as a selector for target-related bins (simulation B). Median biases (top row) and IQRs across runs

(bottom row) are shown as a function of target positions / for subjects and model. Each panel shows the results for a specific spatial masker pattern p, indi-

cated by the black triangles on the abscissa. Results were merged based on spatial masker pattern symmetry. Medians, lower and upper quartiles and minimum

and maximum of individual median biases and IQRs are shown for the subjects as dashed lines, filled areas and thin gray lines, respectively (data from Kopčo

et al., 2010). Black circles indicate the median biases and IQRs of the model. Open circles indicate that the local model RMSE was more than two standard

deviations away from the mean local RMSE of the subjects.

TABLE II. Global model RMSEs for the bias and the IQR for the different

model versions. RMSEs were calculated relative to the median subject data.

Model data were obtained using different types of BMs and combinations of

BMs to test the influence of selection of early vs late portions of the signal

on localization performance. Z values identify how many standard devia-

tions the global RMSEs of the model differed from the mean global RMSEs

of the subjects.

BM type

Bias IQR

RMSE (deg) z RMSE (deg) z

IBM 3.5 –0.2 2.5 –0.6

IBMearly 4.2 –0.0 4.6 0.6

IBMlate 5.4 0.4 11.2 4.4

BM P0 26.2 7.6 12.9 5.4

IBMearlyþBMlate
P0 7.6 1.2 9.5 3.4

BM
early
P0 þ IBMlate 6.7 0.8 10.8 4.1

BME 6.3 0.7 6.9 1.9

IBMearlyþBMlate
E 3.8 –0.2 3.0 –0.3

BM
early
E þ IBMlate 5.2 0.3 3.8 0.2

BME,P0 3.2 –0.4 5.4 1.0

IBMearlyþBMlate
E;P0 3.5 –0.3 2.8 –0.4

BM
early
E;P0 þ IBMlate 4.1 –0.1 5.1 0.9
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IBM-based model can be used as a reference for evaluating

models that do not use optimal a priori information for

selection of target-related [t, fc] bins. Investigating the local

RMSEs, it was observed that for most ð/; pÞ conditions, the

model did not significantly differ from the subject data (open

circles in Fig. 3 indicate where it did).

C. Simulations using template matching

Figure 4 shows the simulation results using the models

based on template matching, using a layout similar to Fig. 3.

The periodicity model shows a global RMSE of 26:2� for the

biases and 12:9� for the IQR (triangles in Fig. 4, see also

Table II). Both of these model RMSEs lay outside two stand-

ard deviations of the mean global RMSE of the subjects.

Particularly, large differences were observed for the left

hemisphere of masker pattern 1, in which the model

responses showed a very strong bias toward the middle and

even toward the masker positions. Also the IQRs were very

large for these conditions. However, there were similarities

to both the subject biases and IQRs in terms of local RMSE

in masker pattern 1 for the on-masker positions. In masker

patterns 3 and 5 a good performance was found for the center

target positions (/ ¼ 0�) in terms of both bias and IQR. This

performance degraded for the more lateral positions, where

the model estimates strongly differed from the subject biases

and IQRs. For masker pattern 4, the bias estimates were

close to the subject biases; however, with the exception at

/ ¼ 30�, the IQRs of the estimates were considerably higher

than observed in the subject data.

For the energy model (circles), the global RMSE was

6:3� for the bias and 6.9� for the IQRs. Both of these values

lay inside two standard deviations of the mean global

RMSEs of the subjects. For most ð/; pÞ conditions, the

model was in good agreement with the subject results as ana-

lyzed with the local RMSEs. The model generally captured

the trends of a medial localization bias and the increment of

IQRs for lateral positions (masker patterns 3–5). These

trends tended to be more distinct in the model than in the

subject data. In masker pattern 1, the performance strongly

degraded for positions far from the masker positions.

The combined model results (diamonds) had a global

RMSE of 3.2� for the biases and 5.4� for the IQRs. Both of

these values lay inside two standard deviations from the

mean global RMSE of the subjects. The biases were in good

agreement with the subject results for all target positions and

all masker patterns. The IQRs generally seemed to be higher

than the subject IQRs. Significant differences were found

FIG. 4. (Color online) Masked target localization biases (top row) and IQRs (bottom row) as a function of target position / for the template-matching models

(simulation C). The layout of the figure and the human data are identical to Fig. 3. Different colors and symbols represent the model variations using different

monaural features (triangles: periodicity; circles: spectral energy; diamonds: combination of both monaural features). The open symbols indicate that the local

model RMSE was more than two standard deviations away from the mean local RMSEs of the subjects. Values that fall outside the plot range are plotted along

the plot edges and not connected to the other data points.
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within the off-masker locations in masker pattern 1 and for

some of the locations in masker patterns 3 and 5. Generally,

the results for the combined model nearly approached the

performance of the IBM model.

D. Influence of early vs late signal portions

Table II shows the global RMSEs of median bias and

IQR for the model using different BMs and BM combina-

tions as a selector for target-related binaural features. BMs

were combined using the IBM in the early portions of the

signal, and BMP0; BME, or BME,P0 in the late portions of the

signal; or vice versa (see Sec. II B 3).

Using only the early or only the late signal portions,

selected with the IBM, generally increased the bias and IQR

RMSEs compared to using the whole signal. This increment

was stronger when using only the late signal portions, espe-

cially for the IQR. These findings suggest than an accurate

selection seems to be more important for the early portions

of the signal than for the late portions. Still, the most accu-

rate results were found when the complete IBM was used.

Results for the mixed BMs showed that replacing the

selection at early and late signal portions by an optimal

selection lowered the RMSEs. This effect was strongest for

the periodicity model. The ideal selection in early signal por-

tions generally led to slightly lower bias and IQR RMSEs

than the ideal selection in late signal portions.

Comparing the results for IBMearly and the combination

of IBMearly and BMlate showed diverse results for the differ-

ent features: While the combinations of IBMearly with BMlate
E

and BMlate
P0;E led to a decrease in RMSE compared to IBMearly

alone, the combination of IBMearly and BMlate
P0 led to a rela-

tively strong RMSE increase compared to IBMearly alone.

These findings suggest that the selection in the late signal

portions of BME and BMP0;E is similar to the contribution of

IBMlate, while the selection in the late signal portions of

BMP0 possibly contains false positives and false negatives.

E. Comparison of BMs

The results of simulation B showed that the model per-

formance using the IBM as a selector for target-related bin-

aural features was very similar to the subject results. Using

the BMs based on template matching showed different

results depending on the monaural features used. It is there-

fore of interest to compare those BMs to the IBM. Figure 5

shows BMs obtained with the four different approaches for

one sample run, alongside the individual PPVs and NPVs,

ACCs, and GPs. Table III shows the average measures

across all conditions and runs. For the IBM (top left panel in

Fig. 5) glimpses were found during the first 50 ms in almost

all frequency bands. This was also reflected in a relatively

high average GP of ð20:3611:0Þ% within the early portion

of the signal (0–100 ms; see Table III). There were also dis-

tinct glimpses observable during the late portions (>130 ms)

in the modulation channels and the channels with fc
¼ 236 Hz; fc ¼ 414 Hz and fc ¼ 488 Hz. There were no

glimpses found after approximately 50 ms in the central fre-

quency channels with fc ¼ 569 Hz to fc ¼ 1470 Hz. This pat-

tern generalized to other sample runs as well, resulting in a

much higher average GP during the early portions than dur-

ing the late portions in the IBM model (Table III).

The GP for the energy model (BME) was similar to the

GP of the IBM. The pattern of selected glimpses was also

similar in the two models: both had a higher GP in the early

than in the late portion, and both lacked glimpses in the late

portions for frequency bands between fc ¼ 569 Hz and

fc ¼ 1470 Hz. In contrast to the IBM and the BME; BMP0

was very sparse. The BME,P0 was the intersection of BMP0

and BME, and was therefore also very sparse.

It is notable that the very few glimpses in the BME,P0

were very accurate estimates of the actual target-related

glimpses defined by the IBM, as seen in a PPV of

67:1%620:9%. Compared to that, the BMP0 showed a rela-

tively low PPV of 22:5%612:7%, indicating that only a

FIG. 5. Comparison of BMs, which

serve as the basis for the selection of

target-related binaural information, for

one sample run (top left: IBM, bottom

left: BMP0, top right: BME, bottom

right: BME,P0). Black areas identify the

estimated target-dominant time-fre-

quency bins (“glimpses”). The calcula-

tion of PPVs, NPVs, and ACCs

(shown on the right, next to each

panel) of the template-based BMs was

done with reference to the IBM.

Furthermore, the GPs are shown.

Vertical dashed lines indicate the sepa-

ration between early portions

(<100 ms) and late portions (>100 ms)

of the signal.
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small part of the already few selected glimpses actually iden-

tified target-related bins. As seen in Fig. 5, there was a large

number of mis-selections during the late portions for fre-

quency channels from fc ¼ 569 Hz to fc ¼ 1296 Hz. This

was reflected in a low PPV of BMP0 in the late portions

(16:2%610:5%). Interestingly, the PPV of BME was also

relatively low (33:3%612:6%), although the overall congru-

ence with the IBM seemed to be relatively high (see Fig. 5).

These results revealed that the false selections arising from

the periodicity and spectral energy features in isolation could

be largely removed if the two features were combined.

While the PPVs differed between the BMs, their NPVs

were relatively similar. NPVs generally had high values

around 90%, meaning that the not-selected [t, fc] bins were

generally correctly identified as not target-related. The accu-

racy was also similar between the different BMs and showed

a relatively high value. This may have been due to the domi-

nance of the number of correct negatives in this measure.

Higher PPVs were found in the early portions of BMP0

and BME, while PPVs were similar for the early and late por-

tions of BME,P0. However, for all BMs, the NPV was

approximately 10% higher in the early portions than in the

late portions, which was also reflected in the accuracy.

V. DISCUSSION

The present study introduced an auditory model for local-

ization of target speech in a complex acoustic environment.

The model was evaluated on experimental data in which the

target, a female voice uttering the word “two,” was masked

by four spatially separated male voices (Kopčo et al., 2010).

Notable properties of the acoustic scene were a relatively low

SNR, short utterances, a full temporal overlap of the target by

the maskers, temporally aligned onsets, reverberation, and

previously unknown masker words whose spatial configura-

tion was also unknown. The model extracted ITD-based bin-

aural features from the multi-talker scene, selected the target-

related binaural features based on a BM, and estimated the

target location by combining information from the selected

and not-selected binaural features. As a selector, we evaluated

the IBM and BMs based on a template-matching procedure

using periodicity, spectral energy, and a combination of both

features. Additionally, the contribution of BMs was examined

separately in the early and late portions of the signals.

When the binaural feature selection was based on the

IBM, the model performance was in good agreement with the

subject performance. However, to create an IBM one needs to

have the signal containing the maskers without the target, a

requirement that is not fulfilled in regular localization tasks.

The model performance using the template-matching BMs

depended on the monaural features applied: Using periodicity,

the overall model performance was worse than the subjects’

performance. Using spectral energy, the performance was

only slightly worse than the subject performance. Using both

features combined led to subject-like performance in terms of

bias and a slight performance degradation in terms of IQR.

Replacing these BM-based selections by an optimal IBM-

based selection in the early or late portions of the signal led to

an improved model performance.

A. Differences between simulation design and
experimental setup

Although the task was the same for the model and the

subjects, there were some differences between the experi-

ment and the simulation, which may have influenced the

general comparability of model and subject performance.

First, the room used to record the BRIRs for the model

simulations in this study was similar to, but not the same as,

that used to collect the subject data. The differences in room

geometry and materials of walls, ceilings and floor may have

caused some differences in reverberation and therefore a dif-

ference in performance. However, given the good match

between the subject and IBM-model performance, this was

unlikely a big factor.

Another difference is that the model does not incorpo-

rate any individualization to account for differences in

behavior between subjects. First, subjects may show some

characteristic variabilities arising from the head-tracking

procedure in the experiment. Applying an “internal noise” to

the model location estimate would account for these variabil-

ities; our present model version, however, does not do this.

Second, each individual may have a characteristic response

behavior, e.g., a certain azimuth offset. Our model did not

account for these kinds of differences. This could be incor-

porated by modeling each subject individually.

B. Differences between model and subject
performance

Several factors may have caused the observed differen-

ces between model and subject performance. (1) There may

be a difference in how binaural information was extracted

TABLE III. PPVs, NPVs, and ACCs of the different template-matching

BMs with respect to the IBM, and GPs for IBM and BMs. The table shows

the measures for the whole BMs, and for the early and late portions

individually.

PPV (%) NPV (%) ACC (%) GP (%)

IBM

Whole 13.0 6 5.5

Early 20.3 6 11.0

Late 9.3 6 4.1

BMP0

Whole 22.5 6 12.7 87.5 6 5.2 84.8 6 4.9 4.2 6 0.9

Early 30.3 6 22.5 80.4 6 10.4 78.4 6 9.4 4.6 6 1.8

Late 16.2 6 10.2 91.0 6 4.0 88.0 6 3.8 3.9 6 0.9

BME

Whole 33.3 6 12.6 90.7 6 4.0 82.6 6 3.8 14.7 6 3.8

Early 39.2 6 17.5 84.7 6 8.8 77.1 6 7.5 19.4 6 8.2

Late 27.4 6 10.2 93.2 6 3.1 85.3 6 3.2 12.3 6 2.7

BME,P0

Whole 67.1 6 20.9 87.5 6 5.2 87.4 6 5.1 0.9 6 0.6

Early 61:3629:9a 80.4 6 10.5 80.4 6 10.1 1.4 6 1.4

Late 66:1627:1a 91.0 6 3.9 90.9 6 3.9 0.6 6 0.5

aNot included are all runs with GP ¼ 0, i.e., 127 runs for BM
early
E;P0 and 32

runs for BMlate
E;P0.
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and combined, as the model used primarily ITDs while the

subjects may have also based their localization on ILDs. (2)

There may be differences in the selection of target-related

time-frequency bins (assuming that the humans use such a

selection at all). (3) There may be a mismatch between the

model and the subjects in the binding process that links the

binaural and monaural information related to the target and

the maskers to estimate the target location. The data using

the IBM as a selector for target-related binaural features

showed absolute biases and IQRs comparable to or even

lower than the subject data. We can thus assume that the bin-

aural features (stage 1), and the location estimation proce-

dure used here (stage 3) accurately simulate human

performance. Thus, larger absolute biases and IQRs in spe-

cific models most likely occurred due to inaccuracies in the

selection of target-related time-frequency bins. These inac-

curacies can arise from both incorrect selection of masker-

dominated bins as target bins (false positives) and omission

of target bins (false negatives).

The combined BM yielded results close to the subject

performance and IBM, although it was very sparse and there-

fore missed many target-related time-frequency bins. On the

other hand, the relative number of false positives (1-PPV)

was rather low. This finding suggests that misses are not nec-

essarily a drawback, as long as the few selected bins are

accurately estimated. As seen in the results for the periodic-

ity BM, too many false positives can have a large negative

effect on the model performance.

False positives occur whenever, by coincidence, the

template and the multi-talker mixture differ in feature values

by less than the chosen minimum difference threshold. For

periodicity, false alarms were observed in the fine structure

filters with center frequencies of approximately

600–1400 Hz. This may be due to an overlap of the high har-

monics of target and masker signals. Therefore, voiced

masker-dominated bins might easily be classified as target

bins. For spectral energy, false positives occur whenever the

mixture and the target template have a similar energy, while

the target is not active in the mixture.

We attempted to reduce the influence of false positives

on target location estimation by subtracting the PDF of not-

selected binaural features from the PDF of selected binaural

features before estimating the target location. Because the

NPVs were generally high for all BMs, the estimation of the

background is considered to be relatively accurate.

However, especially for the periodicity model, this method

was not sufficient to exclude the influence of false positives.

One way to potentially improve the results would be to opti-

mize the parameter b in Eq. (16), which determines the rela-

tive influence of the PDFs of selected and not-selected

binaural features. In the present model, b was optimized for

IBM results and was not changed for the other BMs. It is

possible that location estimates that are remote from the

masker locations would become more accurate if b were

decreased; however, this would come at the cost of more

inaccuracies for positions close to the maskers.

The influence of false positives and false negatives was

especially prominent for masker patterns 1 and 2, in which

all of the maskers were in one hemisphere, and the targets

were in the other hemisphere (azimuths less than �10�).
Here, masker-related binaural features were all in the range

of 20� to 50�, so there was a large difference between them

and the target positions. If the number of false positives and

false negatives was high, the resulting PDF had a maximum

either between target and masker positions or at the masker

positions, resulting in large biases from the actual target

position, and a wider possible spread of location estimates

across runs. However, the subjects did not seem to have a

problem localizing the target in these conditions.

C. Influence of early vs late portions of the signal

Several studies have shown that binaural information is

primarily read out at the signal onset or at rising segments of

the signal envelope (Houtgast and Aoki 1994; Freyman

et al., 1997; Dietz et al., 2013). The present simulations sup-

port these findings. In particular, in simulation D, IBM-

based selection led to better results when used in the early

signal portions than in the late signal portions. This implies

that binaural features in the early portions of the signal are

more accurate than in the late portions of the signal; this was

expected, since reverberation has a smaller influence in the

early portions.

In this experiment, all target and masker tokens started

synchronously, so no onset features or temporal order fea-

tures were available to segregate the talkers. Therefore, cor-

rect selection of target-related time-frequency bins was

important, especially in the early signal portions when the

binaural features are more reliable. Simulation D showed

that the combination of IBM-based selection in the early por-

tions and template-matching BM-based selection in the late

portions can distinctly improve the results compared to using

the template-matching BMs in the early and late portions.

Furthermore, the analysis of BMs revealed a generally lower

accuracy and NPV of BMs for the late than for the early sig-

nal portions: In the early portions, the proportion of misses

(false negatives) of all not-selected [t, fc] bins was higher.

On the other hand, PPVs in the early portions were higher

than or equal to PPVs in the late portions. These results

show that the tested template-matching procedures are not

able to bring out enough target-related binaural features

available in the early portions of the signal.

VI. CONCLUSIONS

(1) The binaural model of Dietz et al. (2011) is capable of

extracting a sufficient amount of ITD information to

model localization of speech in a multi-talker masking

speech mixture. Together with a location estimation

back-end that is based on both target-related and

background-related features, the model performance is

comparable to the subject performance. However, this

requires optimal selection of target-related “glimpses” in

the time-frequency plane, e.g., using the IBM; the target

localization cannot be achieved based on the binaural

model alone. It requires in addition a sophisticated

method to separate the target-related glimpses from the

masker ones.
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(2) Segregation based on target-alone template matching,

while more realistic than the IBM-based segregation,

could not predict the human data as accurately as the IBM

approach when using either periodicity features or spec-

tral energy features alone. However, while periodicity

features alone led to a strong performance degradation,

spectral energy features were still reasonably accurate.

Combining the two features improved the model perform-

ance so that it approached subject performance.

(3) Extracting binaural information from the target-

dominated time-frequency bins during the early portions

of the signal seems to be important for performing the

task in reverberant environments. This is likely because

reverberant energy is initially low, and does not affect

binaural information. However, neither of the template-

matching features was capable of extracting enough of

the critically important target-related information during

the signal onset.

(4) The failure of the template-based BMs to extract the

target-related information during the early signal por-

tions indicates a more complex selection process, possi-

bly involving temporal integration and across-frequency

integration of correlative extracted features, which was

not considered in this study. Alternatively, it is possible

that the listeners combined ITDs and ILDs to estimate

the target, an option not considered in the binaural model

used in this study.

(5) Binaural and periodicity features were selected based on a

salience measure with a rather strict criterion. It was then

assumed that each selected feature either belongs to the tar-

get or the background. This means that binaural unmasking

as implemented, e.g., in equalization-cancellation models

of binaural processing, was excluded. Still, the model per-

formed as well as human listeners. This suggests that

explicit modeling of target-masker superposition may not

be needed for modeling human sound localization.
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